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EVALUATION OF THE CONTACT TEMPERATURE
AND WEAR OF A COMPOSITE FRICTION PAD IN
BRAKING

A. A. Evtushenko and E. G. Ivanik UDC 536.12:539.377

We suggest an analytical model to determine the contact temperature and wear of the working surface of the
elements of friction brakes. It is assumed that one of the elements of the friction pair represents a two-period
system of conjugated dissimilar layers and the other represents a homogeneous half-space. In the process of
friction the wear factor depends linearly on contact temperature. We have studied the influence of the
effective parameters of the composite and aiso of the parameter that characterizes the change in loading
from zero to the nominal value and on the distribution of the contact temperature and wear in braking.

1. Statement of the Problem. According to the approach of [1, 21, to calculate the temperature and wear
of the friction surface in braking we adopt the model represented in Fig. 1. It assumes that at the initial time 7 =
0 the friction pad, under the action of a normally distributed load of intensity P, is pressed against a steel disk.
In general, the load increases monotonically from zero at ¢ = 0 to the maximum value Py according to the law [3]

P(t)y=PyP (t/1), PP(t)=1—exp(-1). (1)

Here the rate of braking V changes from the initial one Vg at ¢ = 0 to the zero one at the time of stopping ¢ = £ in
the following way (4 ]:

V=WV (@), V@) =1l—v+1,P @), Ost<1,. 2)

When ¢, = 0, to calculate the time of stopping 1, we use the condition V(z) = 0, which, according to (2), leads to
a nonlinear equation:

s — th* (ts/ 1) = t;) . (3)

Friction on the contact surface between the pad and the disk causes heat generation that leads to heating
of the elements of the friction pair. The intensity of the frictional heat flux ¢ is equal to the specific power of the
friction forces [2] and is defined by the expression

g =fOP@OV®, 0st=1. (4)

We assume that both bodies are elastic heat-conducting half-spaces (Fig. 1), i.e., the propagation of heat
only along the z normal to the friction surface is taken into account [2]. In turn, the pad represents a composite
that consists of a two-period system of dissimilar layers of thicknesses /; and /;. The mechanical and thermal
contacts between the layers of the composite are perfect. The quantities that relate to the pad are marked thereafter
by the subscript p (pad) and those relating to the disk by the subscript d (disk).

The thermal problem of friction in braking presupposes the solution of the nonstationary heat conduction
cquations
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P(t)
Fig. 1. Diagram of tribocontact.

T (z, 1) 1 0T;(z 1)

622 . . , 2>0 for i=p, z<0 for i=d; 0sr1=¢, &)

subject to initial conditions
T;(z,0)=0, i=p,d, (6)

conjugation conditions

T,0,)=T40,)=T(®, 0=st=t, M
—Kpg%ﬁz=o++ Kd?—@%ﬁzzo_=0(t)’ 0=1=s1g, &)

and conditions of regularity
T,»0, i=p,d for |z] >®, 0st=1. 9

The effective coefficients of thermal conductivity Ky and thermal diffusivity &, of the composite considered,
which were obtained by the method of homogenization by means of microlocal parameters [5], have the form [6]:

nK & K n l-n (10)

(K. 5,8 =1 (Kp.ppycp) + (L= 1) (K, pgs €3) » [K1= Kp = K.
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The pad is the weaker element (as regards thermal effect) of the friction pair; its friction-wear properties
change significantly with an increase in temperature [7]. Therefore, for the wear factor of the working surface of
the pad we will adopt a linear dependence on the contact temperature 7

m(l) =my+m T(1), (1)

which is sufficiently substantiated at small temperature gradients [8].
Then, we calculate the wear of the pad from the formula {9 ]

)
I =[m(T)q ) dty, 0<t=1g, (12)
0

where the intensity of the frictional heat flux g is determined from formulas (1), (2), and (4).
2. Temperature. The solution of the boundary-value problem of heat conduction (5)-(9) obtained by
applying the Laplace integral transform with respect to time ¢ is represented in the form of a convolution [10]:

T
T; (2, f) = AgA” {)’ P U@ =)/t V' (v —19) 19 2 exp (= £1 /1) dry » (13)

i=pd, 0=s7=1,

where
. 1 K k z|
A = £ kg = -R v —d b Cl = —l—* I i p7 d I
1+ ks Ky kp 2V kl-isﬁ
. (14)
0
foPoVo \/ kgt . ! . In I
0 — M = — ; = — N '[ = —= .

3 . g7 T BT

Substitution of the functions £* (1) and V* (2) under the sign of the integral in relation (13) and subsequent
integration at &; = 0 make it possible to find the temperature on the friction surface:

T =AANT (1), 0s1<1, (15)
where
T () = (2+1m—%1) V1 - (1+%zm—1) 2\/7,;F(\/—r*—)+rm\/—r_m‘F(V 2"y, (16)

T
F(r) = exp (1% f exp (xz)dx is the Dawson integral, to calculate the values of which we use the formulas
0

(11]

o _ 2.1 n - "
F(@) = E ‘w‘, 0<1=<3, F(n)= Z gzl—z}_}]—, >3,
i=0 (2 + 1) I! =0 (217)
where (= D1l = 1.
When t, = 0 (¢ = tg), to calculate the contact temperature in braking with constant deceleration [12],
relation (15) yields the expression
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- (21 \/1
T () = 2A0A (1 3%) (ts)’OStStS‘

3. Wear. Having substituted formula (15) for the contact temperature 7 in (12) and integrating, we obtain

a formula for the wear of the rubbing surface of the friction pad:

Ty =myly () + m{AA I, (), 0sSt=1,

where

() =t=1/2+1, @ —15-1)P (") +15P (20)/2,
] 2 3
no=1"w+17 0+ 17,

1&”(;):%—(1 +r)(2+1)T VT —%(10+7rm)12\/; +%z3\/% -

—(+2t) 2+t Vi [%\/Eerf(\/?)—r*exp(— r*)] +%(10+
+ llrm)rrzn\[—r_; [%\/_n—erf(\/?)—-\/? (%4—1*) exp (— 1*):‘ -
_%r?n\/r_m lilés\/_erf(\/—r)—\/—r (lf+% *+r*2) exp(*r*)] +

+%—(2+rm)r,2n\/7m— [%\/(%) erf(m)—\/_r-rexp(— r*)jt -

=5 T

2
3

3
m

Vi, [g\/(%) erf(V2r) -V (gﬂ*) exp (— r*)} ,

(2) ) =2 v [(2 + = 3 m) Mgy @) — (1 + 1) (l + g ) My (T) — My, () +

7 3
+ My (1) — (2 +§Tm) My () + (1 + 2ry) (1 + ’Z‘Tm) Moy () + 7 My2 (1) -

— Tm (1 + %Tm) M021 (T)] s
D) =1, V2, (1 + 1) Mgy (1) = My (1) + My, (7) —
= (L + 2t) Mgy, (7) + 1Mo (D) 1,

Moy, 1) =T IVT — F(VT)1,

Mlm(r)—r [\/_T+ 1 \/_"—(1+T)F(\/—“’)]

M201(t)—1 {2\/’—;:_’_ 13 \/_F+—r*2\/_—r (2+2T +17 )F(\/—T):l
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Mgy, (7) = %"l [erf (Vi) —exp(-1) F(\[?F)} ,

2

1
w7 -] 5 .
Mzn(’):%"[zeﬁ(V?)—i‘/?(aﬂ*) exp (=)~ exp (- 1) F(VT) -
- (%+r*) exp(—r*)F\/?:l ,

Moy (7) = 13'5" E\/(g) erf (V2r') — exp (— 21") F(\/?F)} :

2
Miz1 () =‘TzE [%\/(%) erf (V. 2¢ )“%‘/?exp (-20) - (—:l,;+r*) exp (= 2£")F(\/T’)} ,
Mogz (7) = T [\/(%) —%-F(v 21')} ,

M102(T)=Tr2n [%\/[%) +%\/[%) —% (%+r*) F(\/T)J ,

%erf(ﬁ)—i\/(i} exp(—r*)——;— (§+r*] exp(—r*)F(V 2t )|,

2
M), (@) =1,

Mo12 (%) =7 {335% Vr)- éexp(— z*)F(\/‘z?)J ,

Mozz (7) = T l\/_z;;" erf (VIT') - 5 exp (= 20) F(W)} ,

* 0 * 0
mo = mg foVoPoly » my = my foVoPoly

4. Numerical Analysis. We performed calculations by the following scheme: we assigned the dimensionless
duration 1, of the increase in loading from zero to the maximum value Py. Using Eq. (3), we determined the
dimensionless braking time 7. The dimensionless functions T*(?), Io(?), and 1, () were determined from formulas
(14), (15, (17, and (18), respectively.

The function T*(¢) (the dimensionless contact temperature) reaches its maximum in braking with constant
deceleration (Fig. 2). Its distribution in braking is characterized by appreciable nonuniformity. Increasing rapidly
at the initial time instants, T*(t) attains the maximum value and decreases as 1 = ;. As the parameter 1., increases,
the time needed for the function 7" (2) to reach the maximum value shifts to the direction of complete stopping.

The dimensionless function fp(z) (18) characterizes the wear of the working surface of the pad in the
absence of frictional heat generation. It attains its maximum value at the time of stopping (Fig. 3a). Within the
time interval 0 = ¢t < tg the greatest wear occurs in braking with constant deceleration. At the time of stopping the
wear does not depend on the parameter tp,.

The function 7;(T) (19) is also a monotone increasing function (Fig. 3b), with its maximum value being
rcached at the time of stopping at ¢ = f, but it substantially depends on the parameter 7. For a fixed braking time
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Fig. 2. Change in dimensionless contact temperature 7° = T/(AgA") in
braking with different parameters 7p,.
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Fig. 3. Change in functions /g (a) and 7y (b) in braking with different
parameters 7y,

the value of 1) (9 is the smallest in the case of uniformly decelerated braking. An increase in the nonuniformity of
the change in the rate in the process of braking (an increase in the parameter t,,) lcads to an increase in 1 (p).

The effect of the thermophysical and geometric parameters of the composite manifests itself by means of the factor

A" (13). The coefficient &; in A" characterizes the thermal activity of the pad relative to the disk [10]. Taking into
consideration formulas (10), we represent k. in the form

(20)

k =k, g, (K') \/[&’_(i%;’%)c_l

where

. Ky « Py O * \/
K P ,0] ¢ CI £ dedcd

K, P1"1]

On the basis of formulas (10) the functions of the effect in relation (20) have the form

.2 .
[g(x)] g (9 =1+ lg(x) 1

g (x) 78 (x)

g =g(x) -

)
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Fig. 4. Dimensionless function A* vs relative thermal conductivity of
composite K* (@) (7 =0.5; p" = 1; ¢* = 1) and vs relative specific heat capacity
of composite ¢* (b) (7 = 0.5; p* = 1; K* = 1) for different values of
dimensionless parameter .
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Fig. 5. Dimensionless function A* vs relative thickness of layers of composite
natk, =1;p" =1; ¢ =1 for different values of dimensionless parameter K.
X

gx)=n+(1-nx, 2(x)=%+1_17, g(x)l=x~1.

Thus, the input parameters in calculation of A™ are K*, p*, ¢*,  and k..

An increase in the relative coefficient of thermal conductivity K* leads to a decrease in A* (Fig. 4a). Similar
behavior of A* is observed with an increase in the relative specific heat capacity ¢* (Fig. 4b). As the thickness /;
of one of the components of the composite increases, the factor A" decreases (increases) for K* < 1(K* > 1) (Fig.
5.

Since the temperature (15) and wear (17) are linearly related to A", the character of their dependence on
the effective properties of the composite is determined by the behavior of this factor.

CONCLUSIONS

1) An increase in the content of the component with the higher coefficicnt of thermal conductivity
(K; > K3) in a periodic cell of a composite pad leads to reduction of the contact tcmperature. Conversely, the
temperature on the friction surface in braking will be the highest at a greater content of heat insulator (or of a
material with a low coefficient of thermal conductivity).

2) An increase in the thickness of the composite with the higher coefficient of specific heat capacity
{cy > ¢p) also leads to reduction of the contact temperature.
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Thus, to reduce the temperature in the contact region in braking, it is necessary to increase the thickness
of the component with the higher coefficient of thermal conductivity and specific heat in the composite pad.

NOTATION

t, time; z, axial coordinate; T, temperature; V, slipping velocity; Vy, initial rate of braking; P, pressure;
Py, maximum pressure; g, specific power of friction forces; K, Ky, kp, kg, coefficients of thermal conductivity and
thermal diffusivity of the pad and disk, respectively; [; and /y, thicknesses of dissimilar layers of composite; / =
li + [, thickness of periodically repeated cell of composite; Ky, K, coefficients of thermal conductivity of
components of composite; ¢y, ¢, specific heats of components of composite; py, p2, density of materials of
components of composite; K*, relative thermal conductivity of composite; ¢*, relative specific heat of composite; 7
= [, /1, relative thickness of layers of composite; T, dimensionless contact temperature; fy, friction factor; m, wear
factor; 1y, time needed for loading to attain maximum value; £, time of stopping; tg =2W/ (fPyVy), time of braking
in the case of instantaneous (fn = 0) attainment of the nominal value Pg by loading; t° = t/ty; W, reduced kinetic
energy at beginning of braking; erfc (-) =1 — erf (-); erf (), probability integral.
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