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E V A L U A T I O N  O F  T H E  C O N T A C T  T E M P E R A T U R E  

A N D  W E A R  O F  A C O M P O S I T E  F R I C T I O N  P A D  I N  

B R A K I N G  

A. A. E v t u s h e n k o  and E. G. Ivanik  UDC 536.12:539.377 

We suggest an analytical mode l  to determine the contact temperature and wear of  the working surface o f  the 

elements  o f  friction brakes. It  is assumed that one o f  the elements  of  the friction pair represents a two-period 

system of  conjugated dissimilar  layers and the other represents a homogeneous half-space. In the process  o f  

fr ict ion the wear fac tor  depends  linearly on contact temperature. We have studied the inf luence o f  the 

effective parameters  of  the composite  and also of  the parameter that characterizes the change in loading 

f rom zero to the nominal  value and on the distribution of  the contact temperature and wear in braking. 

1. Statement of  the Problem. According to the approach of [I,  2 ], to calculate the temperature  and  wear 

of the friction surface in braking we adopt  the model represented in Fig. 1. It assumes that at the initial t ime t = 

0 the friction pad, unde r  the action of a normally distr ibuted load of intensity P, is pressed against a steel disk. 

In general ,  the load increases monotonically from zero at t = 0 to the maximum value P0 according to the law [3 ] 

P ( t )  = PO P * ( t / t m )  , P* (t)  = 1 - e x p ( -  t ) .  (1) 

Here  the  rate of braking V changes from the initial one V 0 at t = 0 to the zero one at the time of stopping t -- ts in 

the following way 14 ]: 

V (t) = VoV (3) (T) = 1 - T 4- rmP  (z*) 0 < I < t s (2) 

When tm ~ 0, to calculate the time of stopping ts we use the condition l/(ts) = 0, which, according to (2), leads to 

a nonl inear  equation: 

* o 
t s - trap ( ts / tm) = t s �9 (3) 

Friction on the contact surface between the pad and the disk causes heat generation that leads to heat ing 

of the elements of the friction pair. The  intensity of the frictional heat flux q is equal to the specific power of the 

friction forces [2 ] and is defined by the expression 

q ( t ) = / ( t ) P ( t ) v ( t ) ,  o _ < t _ < t  s.  (4) 

We assume that both bodies are elastic heat-conducting half-spaces (Fig. 1), i.e., the propagation of heat  

only along the z normal to the friction surface is taken into account [2 ]. In turn, the pad represents  a composi te  

that consists of a two-period system of dissimilar layers of thicknesses ll and l 2. The mechanical and thermal  

contacts between the layers of the composite are perfect. Th e  quantities that relate to the pad are marked the rea f t e r  

by the subscript p (pad) and those relating to the disk by the subscript d (disk). 

The  thermal problem of friction in braking presupposes the solution of the nonstat ionary heat conduct ion 

equat ions 
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Fig. 1. D i a g r a m  of t r ibocontac t .  

sub jec t  to initial cond i t ions  

con juga t ion  condi t ions  

- - ,  z > 0  for  i = p ,  z < 0  for  i = d ;  

T i(z, 0) = 0 ,  i =  p, d ,  

Tp (0, t) = T d (0, t) = T ( t ) ,  

0 _< t <_ t~, (5) 

(6) 

0 <- t __- t s , (7) 

OTp (z, t) [ OTo (z, t) t 
+ K d = q ( t ) ,  0 ~< I <_. ts ,  (8) 

-- K p  Oz z=0+ Oz z = 0 -  

a n d  condi t ions  of r egu l a r i t y  

T i-->O, i =  p , d  for  [z] --> oo, 0 < t___ t s .  (9) 

T h e  effect ive coef f ic ien ts  of thermal  conduc t iv i ty  Kp and  t h e r m a l  di f fus ivi ty  kp of the c o m p o s i t e  cons ide red ,  

which  were  o b t a i n e d  by  the  m e t h o d  of homogen iza t ion  by  means  of micro loca l  p a r a m e t e r s  [5 ], have  the  fo rm [6 ]: 

Kp = K 1 
[K 1 l K ~ IK 12 K 1 K2 

+ kp K 

r /K)  ~ "  K ~/ l - r /  

(K,  fi', ~ = r/ ( K l , P l  , Cl) + (1 - r]) (K2, P2 , c2) , [K]  = K 2 - K~ . 

(10) 
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The pad is the w e a k e r  e l e m e n t  (as regards thermal effect) of the friction pair; its friction-wear properties 
change significantly with an increase in temperature [7 ]. Therefore,  for the wear faclor of the working surface of 

the pad we will adopt a linear dependence on the contact temperature T: 

m (t )  = m o + m l  r ( t ) ,  (11) 

which is sufficiently substantiated at small temperature gradients 18 ]. 

Then,  we calculate the wear of the pad from the formula 19 1 

1 

l (t) = f m (T)  q (to) dto , 0 <_ t <- t s ,  (12) 
0 

where the intensity of the frictional heat flux q is determined from formulas (1), (2), and (4). 

2. Temperature .  The solution of the boundary-value problem of heat conduction (5)-(9) obtained by 

applying the Laplace integral transform with respect to time t is represented in the form of a convolution I10 ]: 

-g 

T i (z, t) = AoA* f P* I(~" -- r0 ) / r  m ] V* (~ -- r0) ~O 1/2 
o 

exp ( -  ~2/ro) aT 0 , (13) 

i = p , d ,  O < _ r < - z s ,  

where 

= ~ ;  ke-'- ; ~ i - - - ,  i = p , d ;  
1 + k e K d [kp) 2 ~ s  

A0 -- - -  V / - - - ~ - -  / ; z- = ~ ;  rm =--~- ; T s =  ~ .  
K d t s s t  t s 

(14) 

Substitution of the functions P* (1) and I,/* (2) under  the sign of the integral in relation (13) and subsequen t  

integration at ~i = 0 make it possible to find the temperature on the friction surface: 

T( t )  = A o A * T * ( t ) ,  0 < t-< t s ,  (15) 

where 

( , ) ( 3 )  
T * ( t ) =  2 + r m - ~ r  V~r - 1 + ~ r m - r  2 X ~ m  F(X/ r*)+ZmX/~rm F(X/ '2r*) ,  (16) 

T 

F(r) -- exp ( - r 2 ) f  exp ( x2 )dx  is the Dawson integral, to calculate the values of which we use the formulas 
0 

I l l ]  

27/i  2i- :! 
= , 0 _ < r < 3 ,  F ( r ) =  , r > 3 ,  

i=0 (2i + 1) !! i=o (2T2) i+l 

where ( -1 ) ! !  = 1. 
When tm=  0 (ts--- tO), to calculate the contact temperature in braking with constant deceleration [12], 

relation (15) yields the expression 
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3. Wear. Having subst i tuted formula (15) for the contact temperature T in (12) and integrating, we obtain 

a formula for the wear  of the  rubbing surface of the friction pad: 

I ( t )  = m  OI O(t) + mlAoA I 1 ( t) ,  

where 

0 -< t -< t s , (17) 

2 p .  
I 0 (t) = ,r - T2/2 + "r m ('c - r m - 1) P* (-t-*) + ~7 m ( 2 r * ) / 2 ,  (18) 

Zl (t) = Z ) (t) + z} 2) (t) + 1~ 3) (0,  (19) 

2 (1 +-Cm)(2 + Zm) Z X/-zz - 2 ( 1 0 +  7~m) Z 2V~r + 8 l : 3  ~ - 1~1) (t) = -~ 

- - (1  + 2Tm)(2+Tm)T m ~  ~erf (Vr~-~-~)- -T exp( - -T*)  + 

+ 1 lrm) ~'m ~ ~ erf (V~-~r) ~ + r* 

- - - ~ r m ~ - ~ r  m --~-~-~erf(~-*-T )--~F~-*-T + 5 T * + r  .2 e x p ( - - z * )  + 

1 (2 + rrn ) r m ~ d err ( ~ )  -- ~ exp (-- z-*) -- + i  

- - ' 3  z - m ~ m  V / 2 e r f ( ~ ) - - ~ r  -t-r* 

i~2) (l) = 2 ~ 2 -I--~'fm MI01 ('t) -- (1 -t- ~m) 1 + ~ t  m M001 (r) - M201 (~) + 

+ M211 (~-) -- 2 + ~ r  m Mll  1 ('t-) + (1 + 2Tin) 1 +-2~m M011 (t) + c  raM121 (T) - 

- -  Z" m 1 + ~-'t" m M 0 2 1  ('t') , 

1}3)(t) = ~ m V ' 2 r  m [(t +z'm) M 0 0 2 ( z ' ) - M I 0 2 ( r ) +  M I 1 2 ( r ) -  

- (1 + 2Xm) M012 (z) + TraM022 (T)], 

M001 ('t-) = "gm [ ~ - ~  - F (~-*-r)],  

MIO 1 ('r) = T m X/~-z + ~ ~ -  (1 +'c*)F(ff--~z) , 

3 [  2r,  1 ] M201 (1:) = 'c  m 2ff"~rT + ' ~  ~ + ~ ' t  " . 2 ~ -  (2 + 2v* + z ".2) g(ff-'~-T ) , 
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1 M011 (T) = -~- err (X/-~T) - exp ( -  r*) F (X]-~z) , 

T m 1 
M l l  1 (r) = ~ -  err (x/-~-r) - -~ ~ exp ( -  ~*) - + T* exp ( -  r*) F ( x / 7 )  , 

T m 7 1 *2 
M211 (r) = ~ -  elf  (X/-TT) - ~ ~ + ~* exp ( -  r*) - r exp ( -  r*) F (X/--~r.) - 

1 MOZ t (T) = - ~  erf (X/-~z) - exp ( -  2z*) F (x/-~z") , 

v m 1 
M1z 1 (r) = - ~ -  erf(X/-~z ) - ~ e x p ( -  2 r * ) -  + r *  exp(- -2T*)F(X/~-r  ) , 

MOO 2 (z) = *m - g F (X/~-'*~) , 

2 1 F (Xf~-~T) MI02 (-t-) = z- m + ~- g f - ~- 4- ~-* , 

2 [ ~  1 ~ / 2 )  " 1 ( 3 )  e x p ( - r * ) F ( ~ ) ]  M l l  2 (-t) = "t" m err (X/~r) -- -- exp (-- T*) -- -- + r* 
3 3 

Mo12 (~:) = Zm 

Mo22 ('f) = r m 

2 erf ( x / ~ )  - 1 exp ( -  z*) F (vr-~z ) ]  , 
3v~- 3 J 

erf (vr~-*~ - ~- exp ( -  2r*) F ( ~ - ~ )  , 

m o  = m o l o V 0 e o  t~ , m ,  =  ,/oVoPo?. 
4. Numerical  Analysis. We performed calculations by the following scheme: we assigned the dimensionless 

duration r m of the increase in loading from zero to the maximum value Po. Using Eq. (3), we determined the 

dimensionless braking time T s. The dimensionless functions T*(t), 10(t), and 11 (t) were determined from formulas 
(14), (15), (17), and (18), respectively. 

The function T*(t) (the dimensionless contact temperature) reaches its maximum in braking with constant 
deceleration (Fig. 2). Its distribution in braking is characterized by appreciable nonuniformity. Increasing rapidly 

at the initial t ime instants,  T*(t) attains the maximum value and decreases as t ~ ts. As the parameter Trn increases, 

the time needed for the function T*(t) to reach the maximum value shifts to the direction of complete stopping. 
The dimensionless function lo(t) (18) characterizes the wear of the working surface of the pad in the 

absence of frictional heat generation. It attains its maximum value at the time of stopping (Fig. 3a). Within the 

lime interval 0 _< t <_ t o the greatest wear occurs in braking with constant  deceleration. At the time of stopping the 
wear does not depend on the parameter tin. 

The function 11 (T) (19) is also a monotone increasing function (Fig. 3b), with its maximum value being 

reached at the time of stopping at t = ts, but it substantially depends on the parameter T m. For a fixed braking time 
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Fig. 2. Change  in dimensionless contact  temperature  T* -- T/ (AoA*)  in 

braking with different parameters rm. 
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Fig. 3. Change  in functions I 0 (a) and  I! 

0.2 0.4 0.6 0.8 tit s 
(b) in braking with different  

p a r a m e t e r s  z m. 

the value of I1 (t) is the smallest  in the case of uniformly decelerated braking. An increase in the nonuniformity  of 

the change in the rate in the process of braking (an increase in the parameter  Zm) leads to an increase in 11 (t). 

The effect of the thermophysical  and geometric parameters of the composite manifests  itself by means of the factor 

A* (13). T h e  coefficient ke in A* characterizes the thermal activity of the pad relativc to the disk [10 ]. Taking into 

considerat ion formulas (10), we represent  he in the form 

k, = ~2 go (r*) V f g ~ ) if(c*) 
g (K*) 

(20) 

where 

K* K2 * P2 . * =/,:-?; p 

On the basis of formulas  (10) the functions of the effect in relation (20) have the form 

g(x) ~'(x) Ig(x) l 2 = - , g p ( x ) = l +  [g (x )  l ,  

g (x) 77 g (x) 
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Fig. 4. D imens ion le s s  func t ion  A* vs re la t ive  t h e r m a l  conduc t iv i ty  of 

composite K* (a) (r/---0.5; p* = 1; c* = 1) and vs relative specific heat capacity 

of compos i te  c* (b) (r/ = 0 .5 ;  p* = 1; K* = 1) fo r  d i f f e ren t  values of 

dimensionless  parameter k e. 
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Fig. 5. Dimensionless function A* vs relative thickness of layers of composite 

r/ at k~ --- 1; p* = 1; c* = 1 for different values of dimensionless parameter  K*. 

^ 1 x [g(x)  l = x -  1. ~'(x) = r /  + ( 1 - r / ) x ,  g ( x ) = ~ +  1 - r / '  

Thus ,  the input parameters  in calculation of A* are K*, p*, c*, r/ and ke. 

An increase in the relative coefficient of thermal conductivity K* leads to a decrease in A* (Fig. 4a). Similar 

behavior of A* is observed with an increase in the relative specific heat  capacity c* (Fig. 4b). As the thickness ll 

of one of the components  of the composite increases, the factor A* decreases  (increases) for K* < 1 (K* > l) (Fig. 

5.). 

Since the tempera ture  (15) and wear (17) are linearly re la ted to A*, the character  of their  dependence  on 

the effective properties of the composite is determined by the behavior  of this factor. 

C O N C L U S I O N S  

1) An increase  in the  content  of the component  with the h igher  coefficient of thermal  conductivi ty 

(K 1 > K 2) in a periodic cell of a composite pad leads to reduction of the contact temperature.  Conversely,  the 

temperature on the friction surface in braking will be the highest at a greater  content of heat insulator  (or of a 

material with a low coefficient of thermal conductivity). 

27 An increase in the thickness of the composite with the h igher  coefficient of specific heat  capacity 

(cl > c2) also leads to reduct ion of the contact temperature.  
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Thus,  to reduce the temperature in the contact region in braking, it is necessary to increase the thickness 
of the component with the higher  coefficient of thermal conductivity and specific heat in the composite pad. 

N O T A T I O N  

t, time; z, axial coordinate;  T, temperature; V, slipping velocity; V o, initial rate of braking; P, pressure; 

Po, maximum pressure; q, specific power of friction forces; Kp, Kd, kp, k d, coefficients of thermal conductivity and 

thermal diffusivity of the pad and  disk, respectively; l~ and 12, thicknesses of dissimilar layers of composite; l = 

ll + /2, thickness of periodical ly repeated cell of composite; KI,  K2, coefficients of thermal  conductivity of 
components of composite; cl,  c2, specific heats of components of composite; p~, P2, dens i ty  of materials of 

components of composite; K*, relative thermal conductivity of composite; c*, relative specific heat of composite; r/ 

= Ii/l ,  relative thickness of layers of composite; T*, dimensionless contact temperature; fo, friction factor; m, wear 
0 2 W~ qPoVo), time of braking factor; tin, time needed for loading to attain maximum value; ts, time of stopping; t s = 

in the case of instantaneous (tin = 0) at tainment of the nominal value P0 by loading; T* = t/tm; W, reduced kinetic 

energy at beginning of braking; erfc (.) = 1 - err (-); err ( . ) ,  probability integral. 
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